Fast algorithms for dimensionality reduction and data visualization

Manas Rachh

Yale University

Acknowledgements

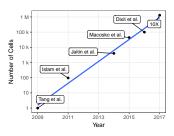
- George Linderman (Yale)
- Jeremy Hoskins (Yale)
- Stefan Steinerberger (Yale)
- Yuval Kluger (Yale)
- Vladimir Rokhlin (Yale)
- Mark Tygert (Facebook)

Introduction

- Applications
 - Single-cell RNA-sequencing (scRNA-seq)
 - Latent representations in deep learning
 - Astronomy
 - ...and much more
- t-SNE implementations scale poorly to large datasets (e.g. 8 hours for dataset of 1 million points in 500 dimensional space)
- FFT-accelerated Interpolation-based t-SNE (FIt-SNE), for faster t-SNE (30 min for same dataset)
- Out-of-Core PCA (oocPCA) for datasets that don't fit in memory

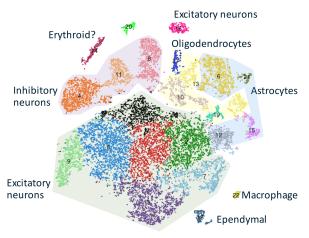
Applications: scRNA-seq

- Bulk RNA-seq averages expression across all cells
- Single cell RNA-seq measures expression in individual cells
- Results tabulated as an expression matrix
 - \bullet columns are genes (\sim 30,000)
 - lacksquare rows are cells ($\sim 10^3$ to 10^6)
- Number of cells growing rapidly



Applications: scRNA-seq

For example, t-SNE of 1.3 million brain cells¹



¹10X Genomics (2016)

t-SNE Optimization

- Input: d-dimensional dataset $X = \{x_1, x_2, ..., x_N\} \subset \mathbb{R}^d$
- Output: s-dimensional embedding $Y = \{y_1, y_2, ..., y_N\} \subset \mathbb{R}^s$, $s \ll d$
- Goal: x_i and x_i close in the input space $\implies y_i$ and y_i are also close
- Affinities between points x_i and x_j in the input space, p_{ij} 'Gaussian'

$$p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / 2\sigma_i^2\right)} \quad \text{and} \quad p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}.$$

■ Affinities between points y_i and y_j - Cauchy kernel

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq J} (1 + ||y_k - y_J||^2)^{-1}}.$$

■ Minimize Kullback-Leibler divergence

$$C(\mathcal{Y}) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$

Gradient Descent

lacktriangle Minimize $C(\mathcal{Y})$ via gradient descent

$$\frac{\partial C}{\partial y_i} = 4Z \sum_{j \neq i} (p_{ij} - q_{ij}) q_{ij} (y_i - y_j)$$

Z is a global normalization constant

$$Z = \sum_{\substack{j=1\\\ell \neq j}}^{N} \sum_{\ell=1}^{N} \frac{1}{(1 + \|y_{\ell} - y_{j}\|^{2})}$$

Split into two parts

$$\frac{1}{4}\frac{\partial C}{\partial y_i} = \underbrace{Z\sum_{j\neq i} \rho_{ij} q_{ij} (y_i - y_j)}_{F_{attr,i}} - \underbrace{Z\sum_{j\neq i} q_{ij}^2 (y_i - y_j)}_{F_{ren,i}}$$

■ Direct calculation: $O(N^2)$

Repulsion term - F_{rep}

$$F_{\text{rep},k}(m) = \left(\sum_{\substack{\ell=1\\\ell\neq k}}^{N} \frac{y_{\ell}(m) - y_{k}(m)}{(1 + \|y_{\ell} - y_{k}\|^{2})^{2}} \right) / \left(\sum_{\substack{j=1\\\ell\neq j}}^{N} \sum_{\ell=1}^{N} \frac{1}{(1 + \|y_{\ell} - y_{j}\|^{2})} \right),$$

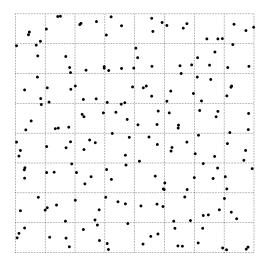
Combinations of

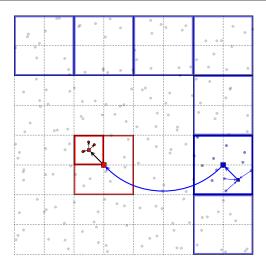
$$\sum_{i=1}^{N} K(y_i, y_j) \sigma_j$$

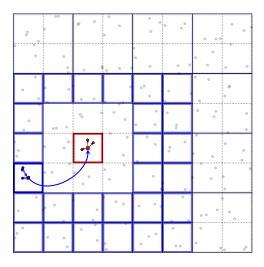
where

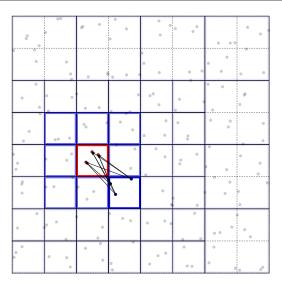
$$K(y,z) = \frac{1}{1 + \|y - z\|^2}$$
 or $K(y,z) = \frac{1}{(1 + \|y - z\|^2)^2}$

■ Existing methods: Tree Codes/ Fast-multipole methods (FMMs)









FMM matrices

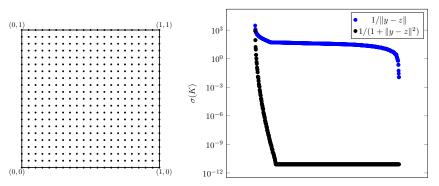
$$F_i = \sum_{j=1}^{N} K(y_i, z_j) \sigma_j$$

- K(y, z) singular when y = z
- Self-interaction: full-rank
- Tree refinement strategy:O(1) particles per leaf box

		Low rank	Low rank	Low rank		Low rank	
Low rank				Low rank	Low rank	Low rank	
Low rank	Low rank				Low rank		
Low rank		Low rank				Low rank	Low rank
		Low rank	Low rank				Low rank
Low rank		Low rank		Low rank			
				Low rank	Low rank		

Self-interaction - smooth kernels

- t-SNE kernels smooth even for y = z
- Even self-interaction can be compressed!



Polynomial interpolation based fast algorithms

- $K_p(y,z)$ polynomial interpolant of K(y,z) of order p
- \tilde{y}_{ℓ} , \tilde{z}_m interpolation nodes, L Lagrange polynomials; then

$$K_{p}(y,z) = \sum_{j=1}^{p^{2}} \sum_{\ell=1}^{p^{2}} K(\tilde{y}_{\ell}, \tilde{z}_{m}) L_{j, \tilde{y}}(y) L_{\ell, \tilde{z}}(z)$$

Replace

$$\phi_\ell = \sum_{j=1}^N K(y_\ell, z_j) \sigma_j$$
 with $\tilde{\phi}_\ell = \sum_{j=1}^N K_p(y_\ell, z_j) \sigma_j$

Relative error:

$$rac{|\phi_\ell - ilde{\phi}_\ell|}{|\phi_\ell|} \leq \sup |\mathcal{K}(y,z) - \mathcal{K}_p(y,z)|$$

- For fixed tolerance ε , p depends on smoothness of K, independent of N
- Greengard, Rokhlin, Gimbutas, Ying, Darve, Zorin, Biros, Barnett, Ho,
 Gillman, Martinsson,...

$\sum_{j} K_{p}(y_{\ell}, z_{j}) \sigma_{j}$

$$\begin{split} \tilde{\phi}_{\ell} &= \sum_{j=1}^{N} \sum_{m=1}^{p^2} \sum_{n=1}^{p^2} K(\tilde{y}_m, \tilde{z}_n) L_{m, \tilde{y}}(y_{\ell}) L_{n, \tilde{z}}(z_j) \sigma_j \\ &= \sum_{m=1}^{p^2} L_{m, \tilde{y}}(y_{\ell}) \left(\sum_{n=1}^{p^2} K(\tilde{y}_m, \tilde{z}_n) \left(\sum_{j=1}^{N} L_{n, \tilde{z}}(z_j) \sigma_j \right) \right) \end{split}$$

■ Step 1:

$$w_n = \sum_{i=1}^N L_{n,\tilde{z}}(z_j)\sigma_j$$
 Work: $O(N \cdot p^2)$

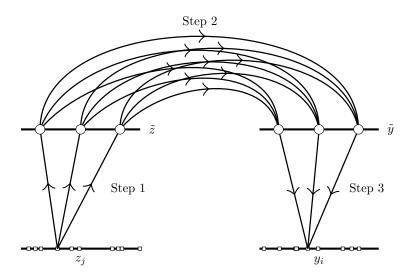
■ Step 2:

$$v_m = \sum_{n=1}^{p^2} K(\tilde{y}_m, \tilde{z}_n) w_n$$
 Work: $O(p^4)$

■ Step 3:

$$ilde{\phi}_\ell = \sum_{m=1}^{p^2} L_{m, ilde{y}}(y_\ell) v_m \qquad \quad ext{Work: } O(M \cdot p^2)$$

Algorithm illustration



FFT accelerated interpolation based t-SNE (FIt-SNE)

- Subdivide domain into $N_{int} \times N_{int}$ boxes
- Given ε , determine p
- Equispaced interpolation nodes
- In each box, compute effective charges at interpolation nodes

$$w_{n,\ell} = \sum_{y_j \in B_\ell}^N L_{n,\tilde{y}^\ell}(y_j)\sigma_j$$
 Work: $O(N \cdot \rho^2)$

Interaction between equispaced nodes - via FFT

$$v_{m,n} = \sum_{j=1}^{N_{\text{int}}^2} \sum_{\ell=1}^{\rho^2} K(\tilde{y}_{m,n}, \tilde{y}_{\ell,j}) w_{\ell,j} \qquad \text{Work: } O((N_{\text{int}} \cdot p)^2 \log{(N_{\text{int}} \cdot p)})$$

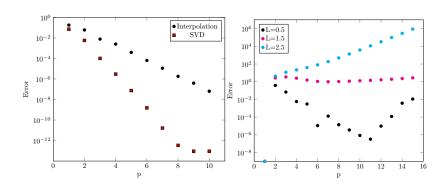
■ Interpolate, for $y_i \in B_\ell$,

$$ilde{\phi}_i = \sum_{j=1}^{
ho^2} L_{m, ilde{y}^\ell}(y_i) v_{m,\ell}$$
 Work: $O(N \cdot
ho^2)$

Choosing N_{int} and p

- Large *p* with equispaced nodes unstable
- t-SNE kernels archetypical examples of Runge phenomenon
- $L \le 1.4$, p < 10 works
- \blacksquare For fixed accuracy, $N_{\rm int} \cdot p$ constant \implies Computational complexity $O(N \cdot p^2)$

Runge phenomenon and equispaced interpolation



Error estimates

1-D interpolation:

$$\tilde{x}_i = -L/2 + (j-1/2) * L/p \quad j = 1, 2, \dots p$$

$$f(x) = 1/(1+x^2)$$
 or $f(x) = 1/(1+x^2)^2$

Interpolation error:

$$\left| f(x) - \sum_{j=1}^{p} L_{j,\{\tilde{x}_j\}}(x) f(\tilde{x}_j) \right| \leq \frac{f^p(\zeta)}{p!} \underbrace{\prod_{j=1}^{p} |x - \tilde{x}_j|}_{\pi_p(x)}$$

Estimates:

$$|f^p| \le \frac{p+2}{2}p! \quad |\pi_p(x)| \le \frac{(2p)!}{2^{2p}p!} \left(\frac{L}{p}\right)^p$$

■ Error in 1-D

$$\left| f(x) - \sum_{i=1}^p L_{j,\{\tilde{x}_j\}}(x) f(\tilde{x}_j) \right| \leq \frac{p+2}{\sqrt{2}} \left(\frac{L}{e} \right)^p e^{\frac{1}{24p}}.$$

Error estimates - II

■ In *d*—dimensions

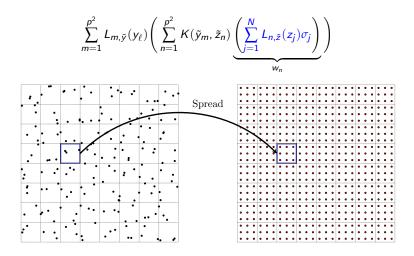
$$f(x) = 1/(1+|x|^2)$$
 or $f(x) = 1/(1+|x|^2)^2$

- In d-dimensional interpolation, estimates via error estimates along lines
- Interpolation error:

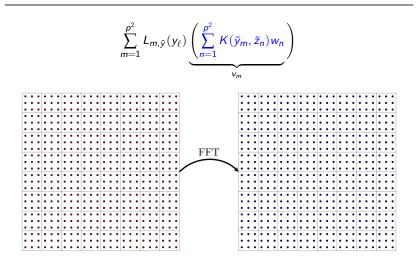
$$\left|f(\mathbf{x}) - \sum_{j=1}^p L_{j,\{\tilde{x}_j\}}(\mathbf{x})f(\tilde{x}_j)\right| \leq \frac{p+2}{\sqrt{2}} \left(\frac{2^d L}{e}\right)^p e^{\frac{1}{24p}}.$$

■ Not sharp for d > 1

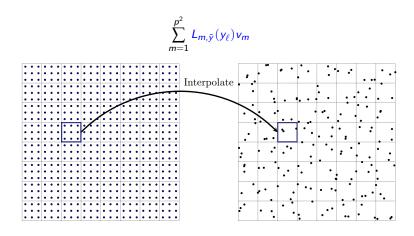
Algorithm Illustration - Step 1



Algorithm Illustration - Step 2



Algorithm Illustration - Step 3



Matrix decomposition

- Matrix K block separable, all submatrices low rank
- $K_{i,j} = U_i S_{i,j} U_j^T$

$$\underbrace{\begin{bmatrix} U_1 & 0 & \dots & 0 \\ 0 & U_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & U_{N_{\text{int}}^2} \end{bmatrix}}_{U} \cdot \underbrace{\begin{bmatrix} S_{1,1} & S_{1,2} & \dots & S_{1,N_{\text{int}}^2} \\ S_{2,1} & S_{2,2} & \dots & S_{2,N_{\text{int}}^2} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N_{\text{int}}^2,1} & S_{N_{\text{int}}^2,2} & \dots & S_{N_{\text{int}}^2,N_{\text{int}}^2} \end{bmatrix}}_{S} \cdot \begin{bmatrix} U_1^T & 0 & \dots & 0 \\ 0 & U_2^T & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & U_{N_{\text{int}}^2}^T \end{bmatrix}$$

- $U_i: n_i \times p^2$ matrix
- S Toeplitz (almost)

Attractive forces - F_{attr}

$$p_{ij} \sim \exp\left(-\|x_i - x_j\|^2/\sigma\right).$$

- lacktriangle Computing p_{ij} a local calculation
- Attractive forces

$$\textit{F}_{\mathsf{attr},i} = \sum_{j \neq i} \textit{p}_{ij} \textit{q}_{ij} \textit{Z}(\textit{y}_i - \textit{y}_j) \approx \sum_{j \in \; \mathsf{KNN} \; \mathsf{of} \; i} \textit{p}_{ij} \textit{q}_{ij} \textit{Z}(\textit{y}_i - \textit{y}_j).$$

 One time computation - doesn't need to be computed every iteration of gradient descent

Nearest Neighbors

- bhtsne: exact nearest neighbors
 - Using vantage point-trees
 - Slows down in high dimensions
- FIt-SNE: approximate nearest neighbors
 - Using ANNOY²
 - Random projections
 - Smoothing effect³ from using near neighbors?

²https://github.com/spotify/annoy

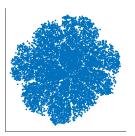
³G. Linderman and S. Steinerberger (2017) arXiv:1711.04712.

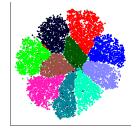
oocPCA for Big Data

- What if dataset is extremely large?
- Computers without enough memory to load data cannot visualize it
 - e.g. 1 million cells with 30,000 genes requires 240GB!
- Out-of-core implementation of randomized PCA
 - \blacksquare Compute the top few (\sim 50) principal components of a dataset without loading it entirely
- Mundane computers can visualize/analyze the largest datasets
- oocPCA computes top 50 principal components with varying memory limitations:

Memory (GB)	1	2	8	32	128	300
Time (Min)	15.9	12.8	12.7	12.0	10.5	8.4

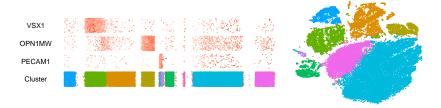
MNIST data





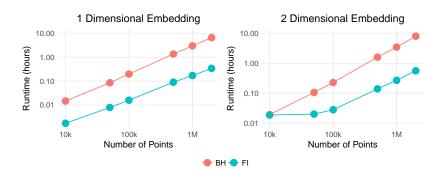
- 10⁶ digit images from Infinite MNIST data-set
- Late exaggeration to separate clusters more effectively

Retinal cells and t-SNE heatmaps

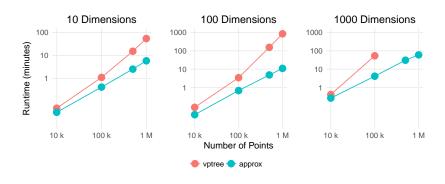


1D t-SNE heatmaps (left) vs 2D t-SNE (right) for 4.9×10^4 retinal cells

Numerical results - Flt-SNE



Numerical results - Fast nearest neighbors



Summary

- We developed fast algorithms for data visualization and dimensionality reduction using t-SNE which is roughly 15 times faster than the state of the art
- We presented interpolation based fast algorithms for N − body interactions with smooth kernels
- Late exaggeration for better separation of clusters
- Out of core PCA for visualizing extremely large data sets on laptops
- Github: https://github.com/KlugerLab/FIt-SNE

Future work

- Better convergence estimates and theoretical framework
- Different affinities for input and target spaces
- Fast multipole style multi-level schemes

Questions?

Questions?

Thank you