Fast algorithms for dimensionality reduction and data

 visualizationManas Rachh
Yale University

Acknowledgements

- George Linderman (Yale)
- Jeremy Hoskins (Yale)
- Stefan Steinerberger (Yale)

■ Yuval Kluger (Yale)

- Vladimir Rokhlin (Yale)

■ Mark Tygert (Facebook)

Introduction

- Applications
- Single-cell RNA-sequencing (scRNA-seq)
- Latent representations in deep learning
- Astronomy
- ...and much more

■ t-SNE implementations scale poorly to large datasets (e.g. 8 hours for dataset of 1 million points in 500 dimensional space)

■ FFT-accelerated Interpolation-based t-SNE (FIt-SNE), for faster t-SNE (30 min for same dataset)

- Out-of-Core PCA (oocPCA) for datasets that don't fit in memory

Applications: scRNA-seq

- Bulk RNA-seq averages expression across all cells
- Single cell RNA-seq measures expression in individual cells
- Results tabulated as an expression matrix
- columns are genes $(\sim 30,000)$
- rows are cells ($\sim 10^{3}$ to 10^{6})

- Number of cells growing rapidly

Applications: scRNA-seq

For example, t -SNE of 1.3 million brain cells ${ }^{1}$

t-SNE Optimization

- Input: d-dimensional dataset $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}$
- Output: s-dimensional embedding $Y=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\} \subset \mathbb{R}^{s}, s \ll d$

■ Goal: x_{i} and x_{j} close in the input space $\Longrightarrow y_{i}$ and y_{j} are also close

- Affinities between points x_{i} and x_{j} in the input space, $p_{i j}$ - 'Gaussian'

$$
p_{i \mid j}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)} \quad \text { and } \quad p_{i j}=\frac{p_{i \mid j}+p_{j \mid i}}{2 N}
$$

■ Affinities between points y_{i} and y_{j} - Cauchy kernel

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

■ Minimize Kullback-Leibler divergence

$$
C(\mathcal{Y})=\sum_{i \neq j} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

Gradient Descent

■ Minimize $C(\mathcal{Y})$ via gradient descent

$$
\frac{\partial C}{\partial y_{i}}=4 Z \sum_{j \neq i}\left(p_{i j}-q_{i j}\right) q_{i j}\left(y_{i}-y_{j}\right)
$$

■ Z is a global normalization constant

$$
Z=\sum_{\substack{j=1 \\ \ell \neq j}}^{N} \sum_{\ell=1}^{N} \frac{1}{\left(1+\left\|y_{\ell}-y_{j}\right\|^{2}\right)}
$$

- Split into two parts

$$
\frac{1}{4} \frac{\partial C}{\partial y_{i}}=\underbrace{Z \sum_{j \neq i} p_{i j} q_{i j}\left(y_{i}-y_{j}\right)}_{F_{\mathrm{attr}, i}}-\underbrace{Z \sum_{j \neq i} q_{i j}^{2}\left(y_{i}-y_{j}\right)}_{F_{\text {rep }, i}}
$$

- Direct calculation: $O\left(N^{2}\right)$

Repulsion term - $F_{\text {rep }}$

$$
F_{\text {rep }, k}(m)=\left(\sum_{\substack{\ell=1 \\ \ell \neq k}}^{N} \frac{y_{\ell}(m)-y_{k}(m)}{\left(1+\left\|y_{\ell}-y_{k}\right\|^{2}\right)^{2}}\right) /\left(\sum_{\substack{j=1 \\ \ell \neq j}}^{N} \sum_{\substack{ }}^{N} \frac{1}{\left(1+\left\|y_{\ell}-y_{j}\right\|^{2}\right)}\right)
$$

- Combinations of

$$
\sum_{j=1}^{N} K\left(y_{i}, y_{j}\right) \sigma_{j}
$$

where

$$
K(y, z)=\frac{1}{1+\|y-z\|^{2}} \quad \text { or } \quad K(y, z)=\frac{1}{\left(1+\|y-z\|^{2}\right)^{2}}
$$

- Existing methods: Tree Codes/ Fast-multipole methods (FMMs)

FMM illustration

FMM illustration

FMM illustration

FMM illustration

FMM matrices

$$
F_{i}=\sum_{j=1}^{N} K\left(y_{i}, z_{j}\right) \sigma_{j}
$$

■ $K(y, z)$ singular when

$$
y=z
$$

- Self-interaction: full-rank
- Tree refinement strategy:
$O(1)$ particles per leaf box

		Low rank	Low rank	Low rank		Low rank	
			Low rank				
Low rank				Low rank	Low rank	Low rank	
Low rank	Low rank				Low rank		
Low rank		Low rank				Low rank	Low rank
		Low rank	Low rank				Low rank
Low rank		Low rank		Low rank			
		Low rank	Low rank				

Self-interaction - smooth kernels

- t-SNE kernels - smooth even for $y=z$
- Even self-interaction can be compressed!

Polynomial interpolation based fast algorithms

- $K_{p}(y, z)$ - polynomial interpolant of $K(y, z)$ of order p

■ $\tilde{y}_{\ell}, \tilde{z}_{m}$ - interpolation nodes, L - Lagrange polynomials; then

$$
K_{p}(y, z)=\sum_{j=1}^{p^{2}} \sum_{\ell=1}^{p^{2}} K\left(\tilde{y}_{\ell}, \tilde{z}_{m}\right) L_{j, \tilde{y}}(y) L_{\ell, \tilde{z}}(z)
$$

- Replace

$$
\phi_{\ell}=\sum_{j=1}^{N} K\left(y_{\ell}, z_{j}\right) \sigma_{j} \quad \text { with } \quad \tilde{\phi}_{\ell}=\sum_{j=1}^{N} K_{p}\left(y_{\ell}, z_{j}\right) \sigma_{j}
$$

- Relative error:

$$
\frac{\left|\phi_{\ell}-\tilde{\phi}_{\ell}\right|}{\left|\phi_{\ell}\right|} \leq \sup \left|K(y, z)-K_{p}(y, z)\right|
$$

- For fixed tolerance ε, p depends on smoothness of K, independent of N
- Greengard, Rokhlin, Gimbutas, Ying, Darve, Zorin, Biros, Barnett, Ho, Gillman, Martinsson,...

$\sum_{j} K_{p}\left(y_{\ell}, z_{j}\right) \sigma_{j}$

$$
\begin{aligned}
\tilde{\phi}_{\ell} & =\sum_{j=1}^{N} \sum_{m=1}^{p^{2}} \sum_{n=1}^{p^{2}} K\left(\tilde{y}_{m}, \tilde{z}_{n}\right) L_{m, \tilde{y}}\left(y_{\ell}\right) L_{n, \tilde{z}}\left(z_{j}\right) \sigma_{j} \\
& =\sum_{m=1}^{p^{2}} L_{m, \tilde{y}}\left(y_{\ell}\right)\left(\sum_{n=1}^{p^{2}} K\left(\tilde{y}_{m}, \tilde{z}_{n}\right)\left(\sum_{j=1}^{N} L_{n, \tilde{z}}\left(z_{j}\right) \sigma_{j}\right)\right)
\end{aligned}
$$

- Step 1:

$$
w_{n}=\sum_{j=1}^{N} L_{n, \tilde{z}}\left(z_{j}\right) \sigma_{j} \quad \text { Work: } O\left(N \cdot p^{2}\right)
$$

- Step 2:

$$
v_{m}=\sum_{n=1}^{p^{2}} K\left(\tilde{y}_{m}, \tilde{z}_{n}\right) w_{n} \quad \text { Work: } O\left(p^{4}\right)
$$

- Step 3:

$$
\tilde{\phi}_{\ell}=\sum_{m=1}^{p^{2}} L_{m, \tilde{y}}\left(y_{\ell}\right) v_{m} \quad \text { Work: } O\left(M \cdot p^{2}\right)
$$

Algorithm illustration

FFT accelerated interpolation based t-SNE (FIt-SNE)

- Subdivide domain into $N_{\text {int }} \times N_{\text {int }}$ boxes
- Given ε, determine p
- Equispaced interpolation nodes
- In each box, compute effective charges at interpolation nodes

$$
w_{n, \ell}=\sum_{y_{j} \in B_{\ell}}^{N} L_{n, \tilde{y}^{\ell}}\left(y_{j}\right) \sigma_{j} \quad \text { Work: } O\left(N \cdot p^{2}\right)
$$

- Interaction between equispaced nodes - via FFT

$$
v_{m, n}=\sum_{j=1}^{N_{\text {in }}^{2}} \sum_{\ell=1}^{p^{2}} K\left(\tilde{y}_{m, n}, \tilde{y}_{\ell, j}\right) w_{\ell, j} \quad \text { Work: } O\left(\left(N_{\mathrm{int}} \cdot p\right)^{2} \log \left(N_{\mathrm{int}} \cdot p\right)\right)
$$

- Interpolate, for $y_{i} \in B_{\ell}$,

$$
\tilde{\phi}_{i}=\sum_{j=1}^{p^{2}} L_{m, \tilde{y}^{\ell}}\left(y_{i}\right) v_{m, \ell} \quad \text { Work: } O\left(N \cdot p^{2}\right)
$$

Choosing $N_{\text {int }}$ and p

- Large p with equispaced nodes - unstable
- t-SNE kernels archetypical examples of Runge phenomenon
- $L \leq 1.4, p<10$ works

■ For fixed accuracy, $N_{\text {int }} \cdot p$ constant \Longrightarrow Computational complexity $O\left(N \cdot p^{2}\right)$

Runge phenomenon and equispaced interpolation

Error estimates

1-D interpolation:

■ $\tilde{x}_{j}=-L / 2+(j-1 / 2) * L / p \quad j=1,2, \ldots p$
■ $f(x)=1 /\left(1+x^{2}\right)$ or $f(x)=1 /\left(1+x^{2}\right)^{2}$

- Interpolation error:

$$
\left|f(x)-\sum_{j=1}^{p} L_{j,\left\{\tilde{x}_{j}\right\}}(x) f\left(\tilde{x}_{j}\right)\right| \leq \frac{f^{p}(\zeta)}{p!} \underbrace{\prod_{j=1}^{p}\left|x-\tilde{x}_{j}\right|}_{\pi_{p}(x)}
$$

- Estimates:

$$
\left|f^{p}\right| \leq \frac{p+2}{2} p!\quad\left|\pi_{p}(x)\right| \leq \frac{(2 p)!}{2^{2 p} p!}\left(\frac{L}{p}\right)^{p}
$$

- Error in 1-D

$$
\left|f(x)-\sum_{j=1}^{p} L_{j,\left\{\tilde{x}_{j}\right\}}(x) f\left(\tilde{x}_{j}\right)\right| \leq \frac{p+2}{\sqrt{2}}\left(\frac{L}{e}\right)^{p} e^{\frac{1}{24 p}} .
$$

Error estimates - II

- In d-dimensions

$$
f(x)=1 /\left(1+|x|^{2}\right) \quad \text { or } \quad f(x)=1 /\left(1+|x|^{2}\right)^{2}
$$

■ In d-dimensional interpolation, estimates via error estimates along lines

- Interpolation error:

$$
\left|f(\boldsymbol{x})-\sum_{j=1}^{p} L_{j,\left\{\tilde{x}_{j}\right\}}(\boldsymbol{x}) f\left(\tilde{x}_{j}\right)\right| \leq \frac{p+2}{\sqrt{2}}\left(\frac{2^{d} L}{e}\right)^{p} e^{\frac{1}{24 p}} .
$$

- Not sharp for $d>1$

Algorithm Illustration - Step 1

$$
\sum_{m=1}^{p^{2}} L_{m, \tilde{y}}\left(y_{\ell}\right)(\sum_{n=1}^{p^{2}} K\left(\tilde{y}_{m}, \tilde{z}_{n}\right) \underbrace{\left(\sum_{j=1}^{N} L_{n, \tilde{z}}\left(z_{j}\right) \sigma_{j}\right)}_{w_{n}})
$$

Algorithm Illustration - Step 2

$$
\sum_{m=1}^{p^{2}} L_{m, \tilde{y}}\left(y_{\ell}\right) \underbrace{\left(\sum_{n=1}^{p^{2}} K\left(\tilde{y}_{m}, \tilde{z}_{n}\right) w_{n}\right.}_{v_{m}})
$$

Algorithm Illustration - Step 3

$$
\sum_{m=1}^{p^{2}} L_{m, \tilde{y}}\left(y_{\ell}\right) v_{m}
$$

Matrix decomposition

- Matrix K block separable, all submatrices low rank
- $K_{i, j}=U_{i} S_{i, j} U_{j}^{T}$
$\underbrace{\left[\begin{array}{cccc}U_{1} & 0 & \ldots & 0 \\ 0 & U_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & U_{N_{\text {int }}^{2}}\end{array}\right]}_{U} \cdot \underbrace{\left[\begin{array}{cccc}S_{1,1} & S_{1,2} & \ldots & S_{1, N_{\text {int }}^{2}} \\ S_{2,1} & S_{2,2} & \ldots & S_{2, N_{\text {int }}^{2}} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N_{\text {int }}^{2}, 1} & S_{N_{\text {int }}^{2}}, & \ldots & S_{N_{\text {int }}^{2}, N_{\text {int }}^{2}}\end{array}\right]}_{S} \cdot\left[\begin{array}{cccc}U_{1}^{T} & 0 & \ldots & 0 \\ 0 & U_{2}^{T} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & U_{N_{\text {int }}^{2}}^{T}\end{array}\right]$
- $U_{i}: n_{i} \times p^{2}$ matrix
- S - Toeplitz (almost)

Attractive forces - $F_{\text {attr }}$

$$
p_{i j} \sim \exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / \sigma\right)
$$

- Computing $p_{i j}$ - a local calculation
- Attractive forces

$$
F_{\mathrm{attr}, i}=\sum_{j \neq i} p_{i j} q_{i j} Z\left(y_{i}-y_{j}\right) \approx \sum_{j \in \mathrm{KNN} \text { of } i} p_{i j} q_{i j} Z\left(y_{i}-y_{j}\right) .
$$

■ One time computation - doesn't need to be computed every iteration of gradient descent

Nearest Neighbors

■ bhtsne: exact nearest neighbors

- Using vantage point-trees
- Slows down in high dimensions
- Flt-SNE: approximate nearest neighbors
- Using ANNOY ${ }^{2}$
- Random projections
- Smoothing effect ${ }^{3}$ from using near neighbors?

[^0]
oocPCA for Big Data

- What if dataset is extremely large?
- Computers without enough memory to load data cannot visualize it
- e.g. 1 million cells with 30,000 genes requires 240GB!
- Out-of-core implementation of randomized PCA
- Compute the top few (~ 50) principal components of a dataset without loading it entirely

■ Mundane computers can visualize/analyze the largest datasets

- oocPCA computes top 50 principal components with varying memory limitations:

Memory (GB)	1	2	8	32	128	300
Time (Min)	15.9	12.8	12.7	12.0	10.5	8.4

MNIST data

- 10^{6} digit images from Infinite MNIST data-set
- Late exaggeration to separate clusters more effectively
G. Lindermann and S. Steinerberger (2017)

Retinal cells and t-SNE heatmaps

1D t-SNE heatmaps (left) vs 2 D t-SNE (right) for 4.9×10^{4} retinal cells

Numerical results - Flt-SNE

Numerical results - Fast nearest neighbors

Summary

■ We developed fast algorithms for data visualization and dimensionality reduction using t-SNE which is roughly 15 times faster than the state of the art

■ We presented interpolation based fast algorithms for N - body interactions with smooth kernels

- Late exaggeration for better separation of clusters
- Out of core PCA for visualizing extremely large data sets on laptops

■ Github: https://github.com/KlugerLab/FIt-SNE

Future work

- Better convergence estimates and theoretical framework

■ Different affinities for input and target spaces
■ Fast multipole style multi-level schemes

- Questions?
- Questions?

Thank you

[^0]: ${ }^{2}$ https://github.com/spotify/annoy
 ${ }^{3}$ G. Linderman and S. Steinerberger (2017) arXiv:1711.04712.

